
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 1

Mapping Monotone Boolean Functions into
Majority

Eleonora Testa, Student Member, IEEE, Mathias Soeken, Member, IEEE, Luca G. Amarù, Member, IEEE,
Winston Haaswijk, Student Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—We consider the problem of decomposing monotone
Boolean functions into majority-of-three operations, with a par-
ticular focus on decomposing the majority-n function. When
targeting monotone Boolean functions, Shannon’s expansion can
be expressed by a single majority-of-three operation. We exploit
this property to transform binary decision diagrams (BDDs)
for monotone functions into majority-inverter graphs (MIGs),
using a simple one-to-one mapping. This process highlights
desirable properties for further majority graph optimization, e.g.,
symmetries between the inputs of primitive operations, which
are not apparent from BDDs. Although our construction yields a
quadratic upper bound on the number of majority-3 operations
required to realize majority-n, for small n the concrete values
are much smaller compared to those obtained from previous
constructions which have linear and quasi-linear asymptotic
upper bounds. Further, we demonstrate that minimum size MIGs,
for the monotone functions majority-5 and majority-7, can be
obtained applying a small number of algebraic transformations
to the BDD.

Index Terms—Binary Decision Diagrams, Majority Logic,
Majority-Inverter Graphs, Function Decomposition

I. INTRODUCTION

THE majority-of-three function 〈xyz〉, which is true if and
only if at least two of its inputs are true, plays an important

role in the digital design of circuits using emerging nanotech-
nologies. Technologies such as Spin-Wave Devices (SWD, [1]),
Quantum-dot Cellular Automata (QCA, [2]), and Spin Torque
Majority Gates (STMG, [3]), are inherently majority-based
and provide the capability of implementing inexpensive and
compact majority-of-three gates.

Several theoretical works from TC0 circuit complexity
make use of majority gates with unbounded fan-in that
realize the majority-n function, where n is odd. TC0 is
the circuit complexity class that contains Boolean circuits
with constant depth and polynomial size, built using only
unbounded-fanin majority gates and inverters [4]. These works
provide results for interesting classes of functions, such as
arithmetic operations (e.g., [5], [6]). They also serve as a
good starting point for circuit realizations when using majority-
based nanotechnologies, provided that one is equipped with
a technique to express majority-n functions, i.e., majority
operations with n inputs, in terms of majority-of-three.

The problem of expressing majority-n using majority-of-
three has already been studied in the 1960s. In [7], Amarel et al.

Eleonora Testa, Mathias Soeken, Winston Haaswijk and Giovanni De
Micheli are with the Integrated Systems Laboratory – EPFL, 1015 Lausanne,
Switzerland (e-mail: eleonora.testa@epfl.ch; mathias.soeken@epfl.ch, win-
ston.haaswijk@epfl.ch, giovanni.demicheli@epfl.ch).

Luca G. Amarù is with Synopsys Inc, 94043 Mountain View CA, United
States (e-mail: luca.amaru@synopsys.com).

investigated “how best can the 5-argument majority function be
realized with a network of 3-input majority gates?”. The focus
was on finding the minimum number of 3-input majorities to
build majority-5, but larger n were also considered [7]. In the
remainder, we will refer to the minimum number of majority-
of-three to build a majority-n as M(n). It is surprising that,
as of today, M(n) is known only for 5- and 7-input majorities,
while the minimum realization of majority-9 (and larger n) in
terms of majority-3 is still under investigation.

Other works have focused on M(n), but they have only
considered its asymptotic bounds [8]. The asymptotic com-
plexity for M(n) is linear, since one can reduce it to median
selection [9]. However, when applying the construction to
small values for n, the resulting majority graphs are still very
large. For example, the majority-7 function can be constructed
using 42 majority-3 operations according to median selection
construction, while it is known that M(7) = 7. Sorter networks
provide an alternative construction that provides a quasi-linear
bound [10]. However, for small n the construction can yield
better results compared to median selection. To follow up
with the previous example, the majority-7 function can be
constructed using 32 majority-3 operations based on the sorter
network construction.

In this paper, we focus on finding the minimum number of
majority-3 operations to express majority-n. In particular, we
propose an alternative construction based on Binary Decision
Diagrams (BDDs, [11]) and we show that for monotone
Boolean functions the Shannon decomposition, which is used
in the construction of BDDs, can be expressed using the
majority function. This leads to a one-to-one translation of
BDDs into majority graphs, which are logic networks in which
all operations are majority-3 functions. Since majority-n is
monotone, we can use the construction as an upper bound on the
number of majority-3 operations. This bound is asymptotically
quadratic, however, for small n it leads to much smaller values
compared to the constructions based on median selection and
sorter networks. For instance, for majority-7 the construction
leads to a realization with 15 majority-3 operations. Therefore,
in order to find small realizations for majority-n networks, for
small n, the proposed BDD based approach can be a more
effective starting point.

We show that we can derive the known optimum results
for majority-5 and majority-7 starting from the proposed BDD
construction by applying well-known algebraic properties of
the majority function and two new identities. We apply the
same procedure to majority-9, and we show that significant
optimization can be obtained leading to a new best-known
solution with 15 majority-3 operations. Majority-7 is the largest



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 2

x3

x1

x4

x6

x5

x2

(a) K4 graph

clique4,3

22

3 33

5

6

4 44

1

5 5

> ⊥
(b) BDD (c) Graph in-

stance with 3-
clique

Fig. 1: Diagrammatic notation of a binary decision diagram for
the function clique4,3. The ‘⊥’ and ‘>’ represent the constant
functions 0 and 1 [13]

majority-n function for which a minimum size solution is
known. The exact solution was found by using exhaustive
search using a SAT-solver (see, e.g., [12]). Here, we explain
in detail the entire derivation; this can provide insight into the
decomposition of larger majority functions and may help to
find values for M(n) where n ≥ 9.

II. PRELIMINARIES

A. Binary decision diagrams

Binary Decision Diagrams (BDDs, [11]) are connected
directed acyclic graphs, in which each node represents a
Boolean function. Two terminal nodes labeled ‘⊥’ and ‘>’
represent the constant functions 0 and 1, and all nonterminal
nodes are labeled ‘i’ for some 1 ≤ i ≤ n and connect their
two successor nodes fxi and fx̄i

i

fx̄i
fxi

xi ? fxi
: fx̄i

(1)

using Shannon’s decomposition:

f = xi ? fxi : fx̄i = xifxi ⊕ x̄ifx̄i (2)

Here, the cofactors fxi
and fx̄i

are the functions that are
obtained by replacing xi with 1 and 0 in f , respectively. Each
BDD has one node without parents representing the function,
called the root. A BDD is called ordered if on each path from
the root vertex to a terminal node, all variables, i.e., node labels,
appear at most once and in the same order; variables may be
skipped. A BDD is called reduced, if no two nodes represent
the same function and if no node’s successors are the same
function. It is well known, that a reduced and ordered BDD is
canonical—it has a unique representation—with respect to a
given variable ordering [11]. In the following, we use the term
BDD to refer to an ordered and reduced BDD.

We will use the Boolean function cliquen,k (see for ex-
ample [14]) as a running example throughout the paper. The
function has

(
n
k

)
variables, each of which representing an edge

in the complete graph Kn over n variables. For example, the
6 variables representing edges in K4 are shown in Fig. 1(a). A

variable assignment corresponds to a particular graph instance,
in which an edge exists if the corresponding variable is set
to true, and is absent otherwise. We have cliquen,k(x) = 1, if
and only if the graph instance corresponding to the assignment
x contains a k-clique, which is a fully connected sub-graph of
k vertices.

Example 1. Fig. 1(b) shows a BDD for clique4,3 with the
variable ordering x1 < x2 < x3 < x4 < x5 < x6. The
highlighted path represents the graph instance which assigns
x1 = x2 = x3 = x6 = 1 and x4 = x5 = 0 (see Fig. 1(c)). This
graph instance contains a 3-clique on edges x2, x3, and x6,
thus the function is equal to 1, i.e., the BDD path terminates
in node ‘>’.

When working with BDDs, it is often more convenient to
represent a BDD of a Boolean function over n variables as
a sequential list of branch instructions Is−1, Is−2, . . . , I1, I0,
where each Ik has the form (vk ?hk : lk) [13]. In this notation,
vk is the label of the node, and hk < k and lk < k are indexes
to other branch instructions, called high and low, respectively.
Instructions I1 = (n + 1 ? 1 : 1) and I0 = (n + 1 ? 0 : 0) are
special instructions to represent the terminal nodes. They have
as vertex labels the “impossible” value n + 1, which is not
used in any of the other steps.

Example 2. The BDD in Fig. 1(b) has the following sequential
list of branch instructions:

I14 = (1 ? 13 : 12), I13 = (2 ? 11 : 10), I12 = (2 ? 9 : 6),

I11 = (3 ? 8 : 7), I10 = (3 ? 4 : 6), I9 = (3 ? 2 : 6),

I8 = (4 ? 1 : 5), I7 = (4 ? 1 : 0), I6 = (4 ? 3 : 0),

I5 = (5 ? 1 : 2), I4 = (5 ? 1 : 0), I3 = (5 ? 2 : 0),

I2 = (6 ? 1 : 0), I1 = (7 ? 1 : 1), I0 = (7 ? 0 : 0).

For example, I14 refers to the root node labeled 1, and I2

refers to the only node labeled 6.

B. Majority logic

In this work, we are concerned with Boolean functions
f : Bn → B that map n input truth values to one output truth
value. The central function in this paper is the majority-of-three
function. The majority function of three Boolean variables x,
y, and z, denoted 〈xyz〉, evaluates to true if and only if at
least two of the three inputs are true. The majority function is
monotone and self-dual [13] and can be expressed in disjunctive
and conjunctive normal form as

〈xyz〉 = xy ∨ xz ∨ yz = (x ∨ y)(x ∨ z)(y ∨ z). (3)

Setting any variable to 0 gives the conjunction of the other
two variables, and analogously one obtains the disjunction by
setting any variable to 1, i.e.,

〈x0y〉 = x ∧ y and 〈x1y〉 = x ∨ y. (4)

We like to emphasize some basic identities of the majority
function which are essential for the forthcoming definition
of majority graphs. First, all three arguments to the majority
function are commutative, i.e.,

〈xyz〉 = 〈yxz〉 = 〈zxy〉. (5)



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 3

Also, the majority function evaluates to a single argument if
two arguments are equal or inverse to each other, i.e.,

〈xxy〉 = x 〈xx̄y〉 = y. (6)

The associativity rule on the majority function allows to
exchange variables if two operations are nested and share
a common variable, i.e.,

〈xu〈yuz〉〉 = 〈〈xuy〉uz〉. (7)

The associativity rule becomes obvious, when replacing u
by some operator symbol ‘◦’ and the angular brackets by
parentheses: (x ◦ (y ◦ z)) = ((x ◦ y) ◦ z); as pointed out by
Schensted [15]. An alternative way to think about its validity,
is by setting u to 0 and 1, and noting that ∧ and ∨ are asso-
ciative [13]. Due to these properties, the set M = B = {0, 1}
and the ternary operation 〈xyz〉 defined according to (3) are
a median algebra [16]. A median algebra is defined as a set
and a majority operator satisfying commutativity, associativity,
and the first identity in (6).

Also a distributivity rule can be derived from these three
rules [17]:

〈xu〈yvz〉〉 = 〈〈xuy〉v〈xuz〉〉 (8)

To easily memorize this rule, it’s handy to replace u by a
symbol ‘◦’ and v by a symbol ‘×’.

Note that in the Boolean case, in which each element has
its inverse, the median algebra is a complemented distributive
lattice [16] and therefore a Boolean algebra (see, e.g., [18]).

Since the majority function is self-dual, inverters can be
propagated from the inputs to the outputs, i.e.,

〈x̄ȳz̄〉 = 〈xyz〉. (9)

The majority function can be generalized for an odd number
of n variables to 〈x1 . . . xn〉 = [x1 + · · · + xn > n

2 ]. Many
of the contributions in this work can be generalized to this
general majority function, although the description is restricted
to 3-input majority functions in this paper. More details about
general majority functions and their properties can be found
in the literature [19], [20].

C. Majority graphs

The mapping approach, which we present in Section III,
changes BDDs into majority graphs. In order to keep our
notation simple, here we introduce majority graphs; we discuss
how our approach can be extended for inverters in Section III-A.

A majority graph is a directed acyclic graph in which
each terminal node is a primary input or a constant and
each nonterminal node represents a majority operation with
three incoming edges. Formally, given a Boolean function
f(x1, . . . , xn), it is most convenient to represent a majority
graph with r majority gates as a chain xn+1, . . . , xn+r, where

xi = 〈xj(i)xk(i)xl(i)〉 for n < i ≤ n + r, (10)

with −1 ≤ j(i) < i, −1 ≤ k(i) < i, and −1 ≤ l(i) < i. We
also define x0 = ⊥ and x−1 = >.

We call a majority graph leafy if j(i) ≤ n, k(i) ≤ n, or
l(i) ≤ n for all n < i ≤ n+r. In other words, in each majority
operation at least one operand is an input variable.

x9

x8

x13

x15

x14

x12

x7

x11

x10

clique4,3

x1⊥

x3

x2

x5

x4

>

x6

Fig. 2: Majority graph for the function clique4,3

Example 3. Fig. 2 shows the majority graph for the Boolean
function clique4,3. x1, . . . , x6 are the primary inputs, while
each node x7, . . . , x15 represents the majority-of-three function.
The majority nodes are given by:

x7 = 〈x0x2x6〉, x8 = 〈x0x1x2〉, x9 = 〈x−1x5x8〉,
x10 = 〈x−1x5x7〉, x11 = 〈x1x7x10〉, x12 = 〈x0x4x11〉,
x13 = 〈x6x8x9〉, x14 = 〈x−1x12x13〉, x15 = 〈x3x12x14〉.

D. Related works

Majority logic was intensively studied in the 1960s [21], [22],
[7]. In 1962, Akers [21] proposed a method based on truth
tables to build both 3-input majority and n-input majority
networks; Miller and Winder [22] illustrated a geometric
process based on Karnaugh maps. In 1964, Amarel et al. [7]
proposed algorithms to rewrite majority-n into majority-3. At
that time, many majority-based algorithms were proposed but,
due to the limited available computational resources, they
were not followed by implementations. Recently, majority
logic has obtained a renewed interest in the computer science
community thanks to its properties that ensure efficient Boolean
function optimization and manipulation, and thanks to the
many and diversified nanotechnologies that use majority as
their building block, see e.g., QCA [23]. In [24], the authors
present an algorithm and tool called MALS for majority-
based logic synthesis. This algorithm maps the network into
3-input subgraphs, and then uses the geometric method [22]
to synthesize them into majority operations. Nanotechnology
applications are addressed by mapping the resulting majority
networks into majority based devices. In [25], the authors
consider majority logic decomposition based on BDDs. In [25],
majority dominator nodes are used in order to guide the
decomposition process; these nodes allow the identification
of candidate functions that can be used to build the majority
decomposition. Although, BDDs are used in the implementation
of their algorithm, it has a very different nature compared to
our work, in which we equate BDDs to majority graphs in the
case of monotone Boolean functions. In [26], the authors show
how the algebraic properties of 3-input majority logic can be
used to optimize Boolean function representations, and has
been experimentally demonstrated to optimize area and delay



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 4

of CMOS circuits [26]. A generalization to majority operation
of n inputs is presented in [19].

III. TRANSFORMING BDDS INTO MAJORITY GRAPHS

As discussed in Section II, one can express any Boolean
function f : Bn → B in terms of its cofactors using (2). If f
is monotone, i.e., fx̄i f̄xi = 0 for all i, it is possible to use the
majority function for decomposition [27]:

f = 〈xifxi
fx̄i
〉 = xifxi

⊕ xifx̄i
⊕ fxi

fx̄i
(11)

Remark 1. The cofactors fxi
and fx̄i

commute in (11), but
they do not in (2).

Remark 2. The cofactor operation preserves monotonicity
in (2). Thus, (11) can iteratively be applied to the whole BDD.

Due to these properties,

f = xi ? fxi
: fx̄i

= 〈xifxi
fx̄i
〉 (12)

and one can replace each “Shannon node” by a “majority node”
in the BDD of monotone functions:

i

fx̄i
fxi

〈xifxi
fx̄i
〉

(13)

Remark 3. Since fxi
and fx̄i

commute, it is no further
necessary to distinguish between the two successors in the
BDD node. Also, since the resulting majority graph is leafy, we
can use a notation analogous to the BDD notation, in which
the node is labeled by the variable operand xi. Note that the
nodes in BDD and majority graphs use the same notation
and have the same shape, but they differ in the operation they
implement (i.e., if-then-else and majority, respectively). They
also differ in how terminal nodes are drawn.

The replacement allows us to generate majority graphs for
monotone functions f(x1, . . . , xn) directly from their BDDs
using the following simple transformation rule. Let the BDD for
f be represented using a sequential list of branch instructions
Is−1, . . . , I0 as described in Example 2. Then a majority graph
for f is

xn+k−1 = 〈xvk
xt(hk)xt(lk)〉 where Ik = (vk ?hk : lk)

(14)
for 2 ≤ k < s. In (14) the index transformation function
t : [0, s− 1] 7→ [−1, n + s− 2] is defined as

t(i) =


0 if i = 0,
−1 if i = 1,
n + i− 1 otherwise.

(15)

Example 4. We show how to apply the transformation to
the BDD in Fig. 1(b). By just translating every BDD node
into a MAJ node as in (13), one obtains the majority graph
depicted in Fig. 3(a). Note that we removed the boxes around
the terminal nodes, mainly to further help distinguishing the
two representations.

clique4,3

22

3 33

5

6

4 44

1

5 5

> ⊥
(a) Majority graph

clique4,3

22

3 33

5

4 4

1

5

> ⊥

4 5

6

(b) Majority graph (compact)

Fig. 3: Diagrammatic notation of a leafy majority graph for
the function clique4,3

Since 〈xi01〉 = xi, we write nodes that have two constant
successors also as terminal nodes. This applies to three nodes
in the graph. Fig. 3(b) shows the compact version.

We prove some properties of the transformation.

Theorem 1. The sequence of majority operations derived
from (14) is a leafy majority graph.

Proof. We have vk ≤ n < n + k − 1. This implies that the
graph is leafy. Also, n + hk − 1 < n + k − 1, since hk < k.
The same applies to lk.

Theorem 2. The majority graph represents f .

Proof. The last step in the majority graph is xn+s−2 which
corresponds to branch instruction Is−1 of the BDD. Therefore,
due to (12),

f = xn+s−2
(12)
= 〈xvs−1xt(hs−1)xt(ls−1)〉

where
Is−1 = (vs−1 ?hs−1 : ls−1)

The rest follows from induction. When i = 1, 0, the instructions
are I1 = (n + 1 ? 1 : 1) and I0 = (n + 1 ? 0 : 0), respectively,
which hold by construction. Let us suppose it holds for all Ii,
with 2 ≤ i ≤ k. Ik+1 has the form (vk+1 ?hk+1 : lk+1). vk+1

is the label of the node, and hk+1 < k + 1 and lk+1 < k + 1
are indexes to other branch instructions, which can only be
instructions Ii with 2 ≤ i ≤ k. Then it follows that also Ik+1

holds, and this concludes the proof.

A. Discussion on inversions

When reducing the size of the resulting majority graph
(which has not complemented edges), some transformation rules
may introduce complemented edges in the majority graph and
transform it into a Majority-Inverter Graph (MIG) [28]. MIGs
are majority graphs which make use of complemented edges
to represent inversions. In the next section, which deals with
deriving optimum majority graphs for majority-5 and majority-
7, we do make use of complemented edges to primary inputs
and we call them optimum MIGs. However, we also present
solutions of the same size that do not require complemented
edges.



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 5

22

1

3

⊥ >
(a) BDD

22

1

3⊥ >
(b) not opti-
mized majority-
3

1

32
(c) optimum
result

Fig. 4: Majority-3 from its optimal BDD

B. Discussion on optimality
In this section, we answer the question whether a size-

optimum BDD produces a size-optimum MIG. Using a simple
counter-example, the majority-3 function, we show that this is
not the case. In general, the size of a BDD depends solely on
the variable order. Therefore, there are one or more variable
orders that lead to the smallest BDD. The next section shows
that the optimum BDD for the majority-3 function requires 4
nodes, and therefore the direct transformation into a majority
graph requires 3 majority gates. This simple example shows
that this MIG is far from the optimal; and since the majority-
3 function is symmetric (see, e.g., [13]), it is not affected
by the variable order. Optimal MIG representations can be
achieved by making use of transformation rules and identities
presented in Section II. It has been proven in [28] that any
other functionally equivalent MIG can be reached using a
finite sequence of transformation rules. It is worth noting that
these identities and rules reshape the MIG in a way such that
the inverse transformation (from MIG to BDD) is not always
possible (see, e.g., majority-5 optimum result given in the next
section). We can conclude that the BDD representations (for
all variable orderings) are a subset of all MIG representations.

IV. MAPPING MAJORITY-n
In this section, we illustrate how to use the proposed

approach to map the majority-n function into MIGs with
majority-3 operations. For example, for the majority-3 function
〈x1x2x3〉, the BDD and its corresponding majority graph are
shown in Fig. 4(a) and (b), respectively. But the majority
expression that Fig. 4(b) represents is 〈x1〈x20x3〉〈x21x3〉〉,
which is of course far from optimal. The distributivity rule
applies to this expression, giving 〈〈x101〉x2x3〉 = 〈x1x2x3〉;
its diagrammatic notation is shown in Fig 4(c).

This example was rather trivial. Next, we show that we
can rewrite majority-5 and majority-7 into their optimum
MIGs using the identities presented in Section II and new
identities which will be described first. We present majority-5
and majority-7 optimization in detail in order to (i) demonstrate
that our method leads to the optimum known results, and (ii)
to illustrate the complete optimization procedure. Then, we
show that the optimization procedure can be generalized for
larger n by showing the optimized majority-9, leading to a
new best solution with 15 majority-3 operations.

A. Replacement rule and swapping rule
The replacement rule describes under which condition one

operand in a majority expression can be replaced by another

one.

Theorem 3 (Replacement rule). We have

〈xyz〉 = 〈wyz〉 if and only if (y ⊕ z)(w ⊕ x) = 0,

or in other words y 6= z ⇒ w = x.

Proof. First note that 〈xyz〉 = x(y ⊕ z)⊕ yz. Then

0 = 〈xyz〉 ⊕ 〈wyz〉
= x(y ⊕ z)⊕ yz ⊕ w(y ⊕ z)⊕ yz

= x(y ⊕ z)⊕ w(y ⊕ z) = (w ⊕ x)(y ⊕ z),

which concludes the proof. An alternative way to see that the
theorem is true, is by applying the majority law to y and z.

One can readily verify that the relevance rule presented
in [26] is a special case of the replacement rule.

Corollary 1 (Relevance rule). We have 〈xyz〉 = 〈xy/z̄yz〉,
where xy/z̄ is obtained by replacing all occurrences of y with
z̄ in x.

Relevance rule is a special case of the replacement rule
when w = xy/z̄ . It can be easily shown that the condition
(y ⊕ z)(w ⊕ x) = 0 is always met. In fact, when y = z,
(y ⊕ z) = 0; when y 6= z = z̄, (w ⊕ x) = (xy/z̄ ⊕ x) =
(x⊕ x) = 0.

The swapping rule describes when two operands in a majority
expression can be swapped between them.

Theorem 4 (Swapping rule). Let v1, v2, w1, w2 not depend on
x and y. We have 〈x〈yv1w1〉〈yv2w2〉〉 = 〈x〈yv2w1〉〈yv1w2〉〉,
if (v1 ⊕ v2)(w1 ⊕ w2) = 0.

In other words, the swapping rule describes a condition in
which the subfunctions v1 and v2 can be swapped. Due to
commutativity, one can also swap w1 with w2, or both.

Proof. From the condition, it follows that we have either (v1 =
v2) or (w1 = w2). Therefore, one of the following cases is
true.

Case (v1 = v2): Then 〈x〈yv1w1〉〈yv1w2〉〉 =
〈x〈yv1w1〉〈yv1w2〉〉 is trivially true.

Case (w1 = w2): Then 〈x〈yv1w1〉〈yv2w1〉〉 =
〈x〈yv2w1〉〈yv1w1〉〉 due to commutativity.

These new rules will be used in the next section to derive the
optimum solution for majority-5 and majority-7. However, they
can be employed in more general majority-based optimization.

B. Mapping majority-5

We now show how to use these diagrams for the majority
decomposition of the majority-5 expression 〈x1x2x3x4x5〉. The
starting point derived from a BDD similar to the majority-3 case
is shown in Fig. 5(a). First, distributivity is applied to the gray
nodes to change 〈x3〈x40x5〉〈x41x5〉〉 into 〈x3x4〈x501〉〉 =
〈x3x4x5〉. However, since the nodes labeled ‘4’ have other
ingoing edges, these nodes need to be preserved. The resulting
network is shown in Fig. 5(b). Relevance rule is applied
on the gray nodes: 〈x30〈x40x5〉〉 = 〈x30〈x̄3x4x5〉〉 and
〈x31〈x41x5〉〉 = 〈x31〈x̄3x4x5〉〉. This allows us to replace
⊥ and > by x̄3 for the gray nodes, thereby making the two



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 6

3

2

3

2

4

1

4

3

⊥ 5 >
(a) distributivity

3

2

3

2

4

1

4

3

⊥ 5 >
4

(b) relevance

3

2

3

2

4

1

3

⊥
5

>
3̄

4

(c) distributivity

3

3

3

4

1

2

3̄

4

5

⊥ >

(d) distributivity

3 3

4

2

1

3̄

4

5
(e) optimum result
with complemented
edges

3 3

4

2

1

1

4

5
(f) optimum
result without
complemented
edges

Fig. 5: Decomposing majority-5 into majority-3

nodes labeled ‘4’ structurally equal, as shown in Fig. 5(c).
After again applying the distributivity law twice, one obtains
the final network in Fig. 5(e). This network has 4 nodes, which
is optimum. The final expression is

〈x2〈x3x4x5〉〈x1x3〈x̄3x4x5〉〉〉. (16)

Note that an alternative expression without complemented edges
can be obtained by applying the relevance rule on Fig. 5(e).
The final expression without complemented edges is

〈x2〈x3x4x5〉〈x1x3〈x1x4x5〉〉〉. (17)

This is shown in Fig. 5(f).

C. Mapping majority-7
Here, we decompose the majority-7 expression
〈x1x2x3x4x5x6x7〉 using an approach similar to the
one employed for majority-5, and we demonstrate that the
optimum known result can be obtained with our methodology.
Fig. 6(a) shows the starting point, derived from its BDD
as done for the majority-3 in Fig. 4. First, the majority-5
graph is identified (gray in Fig. 6(a)) and written as node
M5 = 〈x3x4x5x6x7〉; its expression will be used again later.
From Fig. 6(b) to 6(e), only the left branch of node labeled ‘1’
is considered, but it is worth noting that all steps are applied
in the same way also to its right branch. First, the majority-3
highlighted in Fig. 6(c) is changed into its optimum result,
then the relevance rule is applied on the gray colored nodes of
Fig. 6(d), allowing the replacement of 0 with x̄5. Further, the
distributivity rule is applied on Fig. 6(e). The same procedure
(Fig. 6(b) to 6(e)) works for the right branch and the complete
graph is shown in Fig. 6(f). Here, the distributivity rule is
applied on the topmost nodes. In Fig. 6(g), the two nodes
labeled ‘4’ are almost identical; they only differ in ⊥ and
>. In this scenario, ⊥ and > are interchangeable, and this
allows us to replace ⊥ and > with two signals of opposite
polarities. Fig. 6(h) shows the resulting network, where ⊥

is replaced by the input x3, and > by the input x̄3. Further,
the replacement rule is applied on node labeled ‘1’. The
highlighted branch (being x here) is substituted with a new
sub-graph w, resulting in Fig. 6(i). The replacement rule can
also be applied in a similar way on the left branch of node
labeled ‘1’; the resulting graph is Fig. 6(j). The replacement
rule allows us to apply the distributivity rule on the graph
(highlighted in gray). The new graph is shown in Fig. 6(k);
the node M5 has been changed into its optimum expression
from Fig. 5(e). The swapping rule is next applied on the
graph shown in Fig. 6(k). Since (v1 ⊕ v2)(w1 ⊕ w2) = 0,
then 〈x〈yv1w1〉〈yv2w2〉〉 = 〈x〈yv2w1〉〈yv1w2〉〉 and branches
w1 and w2 can be exchanged between them, resulting in
Fig. 6(l). Distributivity and relevance are applied (highlighted
in Fig 6(l)) to obtain the network of Fig. 6(m). This is the
final network, which has 7 nodes and which corresponds to
the optimum solution. The final resulting expression is

〈x2〈x5〈x1x3x4〉〈x̄5x6x7〉〉〈x4〈x5x6x7〉〈x1x3x̄4〉〉〉. (18)

Note that an alternative expression without complemented edges
is

〈x2〈x5〈x1x3x4〉〈x6x7〈x1x3x4〉〉〉〈x4〈x5x6x7〉〈x1x3〈x5x6x7〉〉〉〉.
(19)

This expression can be obtained by applying the relevance
rule on the highlighted nodes in Fig. 7(a). The optimum result
without complemented edges is shown in Fig. 7(b). Further,
it is worth noting that to find the same solution, exhaustive
search using a SAT-solver (see, e.g., [12]) takes around 0.5
seconds; here, the entire derivation is provided.

We have applied the same rules for the decomposition
of the majority-9 expression 〈x1x2x3x4x5x6x7x8x9〉, using
an approach similar to the one employed for majority-5
and majority-7, and we have demonstrated the realization of
majority-9 using only 15 nodes. The initial (not optimized)
majority graph is the one shown in Fig. 8(a). As of today, M(9)
is still unknown. We applied similar reduction and rewriting
techniques as in the case of majority-7 and were able to reduce
the number of majority-3 operations to 15 (Fig. 8(b)). To
the best of our knowledge, this is the smallest realization
of majority-9 in terms of majority-3. State-of-the-art exact
synthesis is not able to find an optimum representation for
majority-9. The best-known lower bound is 10; this was derived
by showing that no majority graph can be found with 9 nodes
or less.

V. UPPER BOUNDS

In this section, we compare upper bounds of the proposed
method with the state-of-the-art. Further, we show that our
method leads to a tighter upper bound for majority-9.

Our proposed synthesis method from a BDD suggests an
upper bound uB(n) for the majority-n function.

Theorem 5. The majority-n function 〈x1 . . . xn〉 can be real-
ized using a majority graph with at most uB(n) ≤

(⌈
n
2

⌉)2− 1
majority operations.

Proof. Let n = 2k + 1, i.e., k =
⌊
n
2

⌋
. The BDD to represent

〈x1 . . . xn〉 has a diamond shape with 1 node at the first level,
2 nodes at the second level, until k + 1 nodes at level k + 1.



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 7

3

2

3

2

4

1

44 4

3

5 55

6 6

⊥ 7 >
(a) identify majority-5

3

2

3

2

4

1

44 4

M5

5 55

6 6

⊥ 7 >
(b) left branch

3 M5

2

4

1

4

5 5

6 6

⊥ 7 >
(c) identify majority-3

3 M5

2

4

1

4

5 5

6

⊥ 7

6

(d) relevance

3 M5

2

4

1

4

5 5

6

⊥ 7

6

5̄
(e) distributivity

4 M5

2 2

5

1

3

5 6

4

5 3

5

6 67 75̄

⊥ ⊥ > >

(f) distributivity

2

M51

4

53

5 6

4

5 3

5

6 67 75̄

⊥ ⊥ > >

(g) remove > and ⊥

2

M51

4

5

6

4

5 5

〈xyz〉

x

675̄

3

3 3̄

(h) replacement rule

2

M51

4

5

6

4

5 5

〈xyz〉

x

675̄

3

3 1

(i) replacement rule

2

M51

4

5

6

4

5

675̄

3

1

(j) distributivity + M5

optimum

2

4 4

5 53

6 5 65

v1 w1

v2

w2

5̄ 5̄7 76 6

1 3

(k) swapping rule

2

4 4

5 5 1

561 3 3

5̄ 7 6 7
(l) distributivity
(gray) and
relevance (dark
gray)

2

5 4

1 6 16

4 3 5̄ 7 5 4̄ 3
(m) optimum result

Fig. 6: Decomposing majority-7 into majority-3

2

5 4

1 6 16

4 3 5̄ 7 5 4̄ 3
(a) optimum majority-
7, with complemented
edges

2

5 4

6 1

517 3

3 4 6 7
(b) optimum
majority-7, without
complemented
edges

Fig. 7: Optimum majority-7 with (a) and without (b) comple-
mented edges, respectively

Then, the number of nodes per level decreases: it has k nodes
on level k + 2, k − 1 nodes on level k + 3, until 1 node on
the last level. Further, this node in the last level will be a leaf
in the majority graph (thus the -1). In summary, this leads to:

uB ≤
k+1∑
i=1

i +
k∑

i=1

i− 1.

From this, we can derive
k+1∑
i=1

i +
k∑

i=1

i− 1 =
(k + 1)(2k + 2)

2
− 1 = (k + 1)2 − 1

=
(⌊n

2

⌋
+ 1
)2

− 1 =
(⌈n

2

⌉)2

− 1.

Theorem 5 yields a quadratic upper bound, but as discussed
in the introduction, it is possible to do much better. A
quasi-linear construction follows from sorter networks [29].

5

2

1

4

3

5

4

3

2

4

3

5

6

4

5

6

7

6

7

8

5

6

7

8

9 >⊥
(a) not optimized majority-
9: 24 nodes

5

8

6

8

3

66̄

4

7

6

5

1

2

6

5̄

5

4

77 7̄

3

9
(b) optimized majority-9: 15
nodes

Fig. 8: Decomposing majority-9 into majority-3

We simply sort the n bits and pick the one that ends up
in the middle position. Sorter networks consist of com-
parators, which are functions that map a pair of numbers
x, y 7→ min(x, y),max(x, y). For Boolean numbers we have
min(x, y) = x∧y and max(x, y) = x∨y, i.e., each comparator
in a sorter network can be composed with 2 majority-3
operations. Let S(n) be the optimum number of comparators
in a sorter network that sorts n elements. Then an upper bound
on the number of majority-3 operations is uS(n) ≤ 2S(n).
From [10], it is known that S(10) = 29. Using, e.g., the
systematic construction from Batcher [30], one can derive
upper bounds for larger n.

Dor and Zwick showed that less than 2.942n comparisons are
necessary to select the median value from a set of n numbers,
without the need to sort them [9]. Applying it directly, it



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2881245, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, 2018 8

TABLE I: Upper bounds on the number of majority-3 operations to realize majority-n

n 3 5 7 9 11 13 15 17

Optimum (M(n)) 1 4 7
Optimized BDDs 1 4 7 15
BDDs 3 8 15 24 35 48 63 80
Sorter networks 6 18 32 50 70 90 112 142
Median selection∗ 18 30 42 53 65 77 89 101

∗ These numbers are based on the number of comparators in the construction of [9], but do not take other operations into account.

would lead to an upper bound of 5.884n majority-3 operations
to decompose majority-n. However, this number needs to be
treated more carefully, since their analysis is based on the
comparison model in which only the number of comparators
are counted and all other operations are considered free.

Both the construction on sorter networks and median
selection have asymptotically better upper bounds compared
to the quadradic bound from the BDD construction. However,
when actually calculating the numbers for small instances with
n ≤ 17, the BDD approach yields the smallest values (see
Table I, which also shows the known optimum results up to
n = 7 that were confirmed using exhaustive enumeration [12]).
The approach is therefore a good starting point for finding
compact majority-n realizations for small n. The results
obtained using BDD + optimization rules are listed in Table I
as “Optimized BDD”. Our method is able to obtain (i) the
optimum known results for majority-5 and -7, and (ii) the best
result for majority-9. One may be able to derive a general
derivation procedure to obtain optimum or close to optimum
majority-n realizations for n ≥ 9.

VI. CONCLUSIONS

We have described a mapping method for monotone Boolean
functions, based on the transformation of BDDs into majority
graphs. We have used the proposed method to map the majority-
n function into MIGs with majority-3 operations. Due to the
more compact initial representation, the approach is favorable
compared to methods based on median selection and sorter
networks, for small n. In particular, we were able to derive
the optimum MIG for majority-5 and majority-7 functions.
For their optimization, we introduced two useful identities for
majority-based function optimization.

ACKNOWLEDGMENT

This research has been supported by the Swiss National
Science Foundation (200021-169084 MAJesty) and by H2020-
ERC-2014-ADG 669354 CyberCare.

REFERENCES

[1] A. Khitun and K. L. Wang, “Non-volatile magnonic logic circuits
engineering,” Journal of Applied Physics, vol. 110, no. 034306, 2011.

[2] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum
cellular automata,” Nanotechnology, vol. 4, no. 1, pp. 49–57, 1993.

[3] D. E. Nikonov, G. I. Bourianoff, and T. Ghani, “Proposal of a spin torque
majority gate logic,” IEEE Electron Device Letters, vol. 32, no. 8, pp.
1128–1130, 2011.

[4] M. Agrawal, E. Allender, and S. Datta, “On TC0, AC0, and arithmetic
circuits,” Journal of Computer and System Sciences, vol. 60, no. 2, pp.
395 – 421, 2000.

[5] W. Hesse, E. Allender, and D. A. M. Barrington, “Uniform constant-
depth threshold circuits for division and iterated multiplication,” Journal
of Computer and System Sciences, vol. 65, no. 4, pp. 695–716, 2002.

[6] J. H. Reif and S. R. Tate, “On threshold circuits and polynomial
computation,” SIAM Journal on Computing, vol. 21, no. 5, pp. 896–
908, 1992.

[7] S. Amarel, G. Cooke, and R. O. Winder, “Majority gate networks,” IEEE
Transactions on Electronic Computers, no. 1, pp. 4–13, 1964.

[8] A. S. Kulikov and V. V. Podolskii, “Computing majority by constant depth
majority circuits with low fan-in gates,” in Symposium on Theoretical
Aspects of Computer Science, 2017, pp. 49:1–49:14.

[9] D. Dor and U. Zwick, “Selecting the median,” SIAM Journal on
Computing, vol. 28, no. 5, pp. 1722–1758, 1999.

[10] M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp, “Twenty-
five comparators is optimal when sorting nine inputs (and twenty-nine
for ten),” in Int’l Conf. on Tools with Artificial Intelligence, 2014, pp.
186–193.

[11] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[12] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Exact
synthesis of majority-inverter graphs and its applications,” IEEE Trans.
on CAD of Integrated Circuits and Systems, 2017, accepted.

[13] D. E. Knuth, The Art of Computer Programming, Volume 4A. Addison-
Wesley, 2011.

[14] S. Jukna, Boolean Function Complexity. Springer, 2012.
[15] C. Schensted, 1978, a letter to Martin Gartner from December 9, 1978.
[16] G. Birkhoff and S. A. Kiss, “A ternary operation in distributive lattices,”

Bulletin of the American Mathematical Society, vol. 53, no. 8, pp. 749–
752, 1947.

[17] M. Sholander, “Medians and betweenness,” Proceedings of the American
Mathematical Society, vol. 5, pp. 801–807, 1954.

[18] T. Sasao, Switching Theory for Logic Synthesis. Springer, 1999.
[19] L. G. Amarù, P.-E. Gaillardon, A. Chattopadhyay, and G. De Micheli,

“A sound and complete axiomatization of majority-n logic,” IEEE Trans.
on Computers, vol. 65, no. 9, pp. 2889–2895, 2016.

[20] A. Chattopadhyay, L. G. Amarù, M. Soeken, P.-E. Gaillardon, and
G. De Micheli, “Notes on majority Boolean algebra,” in Int’l Symp. on
Multiple-Valued Logic, 2016, pp. 50–55.

[21] S. B. Akers Jr., “Synthesis of combinational logic using three-input
majority gates,” in Symp. on Switching Circuit Theory and Logical
Design, 1962, pp. 149–157.

[22] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geometric
methods,” IRE Trans. Electronic Computers, vol. 11, no. 1, pp. 89–90,
1962.

[23] P. D. Tougaw and C. S. Lent, “Logical devices implemented using
quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3,
pp. 1818–1825, 1993.

[24] R. Zhang, P. Gupta, and N. K. Jha, “Majority and minority network
synthesis with application to QCA-, SET-, and TPL-Based nanotechnolo-
gies,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 26,
no. 7, pp. 1233–1245, 2007.

[25] L. G. Amarù, P. Gaillardon, and G. D. Micheli, “BDS-MAJ: a BDD-
based logic synthesis tool exploiting majority logic decomposition,” in
Design Automation Conference, 2013, pp. 47:1–47:6.

[26] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic optimiza-
tion,” in Design Automation Conference, 2014, pp. 194:1–194:6.

[27] S. B. Akers Jr., “A truth table method for the synthesis of combinational
logic,” IEEE Trans. Electronic Computers, vol. 10, no. 4, pp. 604–615,
1961.

[28] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 35, no. 5, pp. 806–819, 2016.

[29] D. E. Knuth, The Art of Computer Programming, Volume 3, Second
Edition. Addison-Wesley, 1998.

[30] K. E. Batcher, “Sorting networks and their applications,” in AFIPS Sprint
Joint Computing Conference, 1968, pp. 307–314.


